Simple query interface to SQL databases.
Supports SQLite and Postgres.
API
Name | Description |
dblite.init() | returns a opened dblite.Database object, the first created if no options given |
dblite.fetchall() | runs SELECT , returns all rows |
dblite.fetchone() | runs SELECT , returns a single row, or None |
dblite.insert() | INSERT a single row into table, returns inserted ID |
dblite.insertmany() | INSERT multiple rows into table, returns a list of inserted IDs |
dblite.select() | runs SELECT , returns cursor |
dblite.update() | UPDATE table, returns affected row count |
dblite.delete() | DELETE from table, returns affected row count |
dblite.execute() | executes SQL with arguments, returns cursor |
dblite.executemany() | executes SQL against all parameter sequences |
dblite.executescript() | executes SQL as a script of one or more SQL statements |
dblite.close() | closes the database and all pending transactions, if open |
dblite.transaction() | returns dblite.Transaction context manager |
dblite.register_adapter() | registers function to auto-adapt given Python types to database types in query parameters |
dblite.register_converter() | registers function to auto-convert given database types to Python in query results |
dblite.register_row_factory() | registers function to produce query results as custom type |
| |
dblite.Database | |
Database.fetchall() | runs SELECT , returns all rows |
Database.fetchone() | runs SELECT , returns a single row, or None |
Database.insert() | INSERT a single row into table, returns inserted ID |
Database.insertmany() | INSERT multiple rows into table, returns a list of inserted IDs |
Database.select() | runs SELECT , returns cursor |
Database.update() | UPDATE table, returns affected row count |
Database.delete() | DELETE from table, returns affected row count |
Database.execute() | executes SQL with arguments, returns cursor |
Database.executemany() | executes SQL against all parameter sequences |
Database.executescript() | executes SQL as a script of one or more SQL statements |
Database.transaction() | returns dblite.Transaction context manager |
Database.open() | opens database connection if not already open |
Database.close() | closes the database and all pending transactions, if open |
Database.closed | whether database is not open |
Database.cursor | database engine cursor object |
Database.row_factory | custom row factory, as function(cursor, row tuple) |
Database.ENGINE | underlying database engine, "sqlite" for SQLite3 and "postgres" for PostgreSQL |
| |
dblite.Transaction | |
Transaction.fetchall() | runs SELECT , returns all rows |
Transaction.fetchone() | runs SELECT , returns a single row, or None |
Transaction.insert() | INSERT a single row into table, returns inserted ID |
Transaction.insertmany() | INSERT multiple rows into table, returns a list of inserted IDs |
Transaction.select() | runs SELECT , returns cursor |
Transaction.update() | UPDATE table, returns affected row count |
Transaction.delete() | DELETE from table, returns affected row count |
Transaction.execute() | executes SQL with arguments, returns cursor |
Transaction.executemany() | executes SQL against all parameter sequences |
Transaction.executescript() | executes SQL as a script of one or more SQL statements |
Transaction.commit() | commits pending actions, if any |
Transaction.rollback() | rolls back pending actions, if any |
Transaction.close() | closes the transaction, performing commit or rollback as specified |
Transaction.closed | whether transaction is not open |
Transaction.cursor | database engine cursor object |
Transaction.database | returns transaction Database instance |
Transaction.ENGINE | underlying database engine, "sqlite" for SQLite3 and "postgres" for PostgreSQL |
| |
Internal modules | |
dblite.engines.postgres | Postgres plugin |
dblite.engines.sqlite | SQLite plugin |
Usage
import dblite
dblite.init(":memory:") # Open SQLite in-memory database
dblite.executescript("CREATE TABLE test (id INTEGER PRIMARY KEY, val TEXT)")
dblite.insert("test", val=None)
for i in range(5):
dblite.insert("test", {"val": i})
dblite.fetchone("test", id=1) # Queries return dictionaries
dblite.fetchall("test", order="val", limit=3)
dblite.update("test", {"val": None}, val=2)
dblite.fetchall("test", val=("IN", range(3)))
dblite.delete("test", id=5)
dblite.executescript("DROP TABLE test")
Provides a simple context manager for transactions:
# dblite.init("sqlite path" or {..postgres opts..})
with dblite.transaction() as tx:
tx.insert("test", val="will be rolled back")
tx.update("test", {"val": "will be rolled back"}, id=0)
raise dblite.Rollback # Rolls back uncommitted actions and exits block
tx.insert("test", val="this will never be reached")
print("continuing, Rollback does not propagate out of managed context")
with dblite.transaction(commit=False) as tx:
tx.insert("test", val="will be committed")
tx.commit() # Commits uncommitted actions
tx.insert("test", val="will be rolled back")
tx.rollback() # Rolls back uncommitted actions
tx.insert("test", val="will be rolled back automatically by Transaction")
Queries directly on the Database object use autocommit mode: every action query gets committed immediately.
Database instances are usable as context managers:
with dblite.init("my.sqlite") as db: # File will be closed on exiting block
db.executescript("CREATE TABLE test (id INTEGER PRIMARY KEY, val TEXT)")
db.insert("test", id=1, val="value")
The first Database instance created for engine is cached per engine, consecutive init()
calls with no connection options yield the cached instance.
# Create default database for SQLite
dblite.init(":memory:")
# All module-level queries use the very first created
dblite.fetchall("sqlite_master")
# Create default database for Postgres
dblite.init("postgresql://user@localhost/mydb")
# All module-level queries use the very first created: SQLite
dblite.fetchone("sqlite_master")
# Access the second default Database
dblite.init(engine="postgres").fetchall("information_schema.columns")
# Grab references to either
db1 = dblite.init(engine="sqlite")
db2 = dblite.init(engine="postgres")
Queries
Columns to SELECT
can be a string, or a sequence of strings:
# Result: SELECT *
dblite.fetchone("test")
dblite.fetchone("test", "*")
# Result: SELECT id
dblite.fetchone("test", "id")
dblite.fetchone("test", ["id"])
# Result: SELECT id, val
dblite.fetchone("test", "id, val")
dblite.fetchone("test", ["id", "val"])
# Can be arbitrary SQL expressions, invoking functions and assigning aliases
dblite.fetchone("test", "COUNT(*) AS total")
Keyword arguments are added to WHERE
clause, or to VALUES
clause for INSERT
:
myid = dblite.insert("test", val="lorem")
dblite.update("test", {"val": "lorem ipsum"}, id=myid)
dblite.fetchone("test", id=myid)
dblite.delete("test", val="lorem ipsum")
WHERE
clause supports simple equality match, binary operators, collection lookups ("IN"
, "NOT IN"
), raw SQL strings, or arbitrary SQL expressions. Used SQL needs to be supported by the underlying engine.
dblite.fetchall("test", val="ciao")
dblite.fetchall("test", where={"id": ("<", 10)})
dblite.fetchall("test", id=("IN", list(range(5))))
dblite.fetchall("test", val=("!=", None))
dblite.fetchall("test", val=("IS NOT", None))
dblite.fetchall("test", val=("LIKE", "%a%"))
dblite.fetchall("test", where=[("LENGTH(val)", (">", 4))])
dblite.fetchall("test", where=[("EXPR", ("LENGTH(val) > ?", [4]))])
dblite.fetchall("test", where=[("EXPR", ("val = ? OR id > ? or id < ?", [0, 1, 2]))])
WHERE
arguments are AND
-ed together, OR
needs subexpressions:
# Result: WHERE (id < 1 OR id > 2) AND val = 3
dblite.fetchall("test", where=[("id < ? OR id > ?", [1, 2]), ("val", 3)])
Argument for key-value parameters, like WHERE
or VALUES
, can be a dict, or a sequence of key-value pairs:
# Result: SET val = 'done' WHERE id = 1
dblite.update("test", values={"val": "done"}, where=[("id", 1)])
Argument for sequence parameters, like GROUP BY
, ORDER BY
, or LIMIT
, can be an iterable sequence like list or tuple, or a single value.
# Result: SELECT * FROM test GROUP BY val
dblite.fetchall("test", group="val")
# Result: SELECT * FROM test GROUP BY id, val
dblite.fetchall("test", group="id, val")
dblite.fetchall("test", group=("id", "val"))
# Result: SELECT * FROM test ORDER BY id
dblite.fetchall("test", order="id")
dblite.fetchall("test", order="id ASC")
dblite.fetchall("test", order=("id", True))
# Result: SELECT * FROM test ORDER BY id ASC val DESC
dblite.fetchall("test", order="id, val DESC")
dblite.fetchall("test", order=["id", ("val", False)])
dblite.fetchall("test", order=[("id", True), ("val", False)])
dblite.fetchall("test", order=[("id", "ASC"), ("val", "DESC")])
# Result: SELECT * FROM test LIMIT 2 OFFSET 0
dblite.fetchall("test", limit=2)
dblite.fetchall("test", limit=(2, 0))
dblite.fetchall("test", limit=(2, -1))
dblite.fetchall("test", limit=(2, None))
# Result: SELECT * FROM test LIMIT 2 OFFSET 10
dblite.fetchall("test", limit=(2, 10))
# Result: SELECT * FROM test OFFSET 10
dblite.fetchall("test", limit=(-1, 10))
dblite.fetchall("test", limit=(None, 10))
Name quoting
Table and column name strings are not quoted automatically. Names with whitespace or non-alphanumeric characters or reserved words can be quoted with Database.quote()
and Transaction.quote()
:
with dblite.init("my.sqlite") as db:
db.executescript("CREATE TABLE test (id INTEGER PRIMARY KEY, %s TEXT)" %
db.quote("my column"))
db.insert("test", {"id": 1, db.quote("my column"): "value"})
for row in db.select("test"):
print(row["my column"])
Note that in Postgres, quoted identifiers are case-sensitive.
Table and column names that were given as data classes and class members, are quoted automatically if their values need escaping, see name quoting in objects.
Adapters and converters
Provides options to register custom adapters and converters, to auto-adapt Python types to database types in query parameters, and to auto-convert database types to Python types in query results.
dblite.init(":memory:")
dblite.register_adapter(json.dumps, (dict, list, tuple))
dblite.register_converter(json.loads, "JSON")
dblite.executescript("CREATE TABLE test (id INTEGER PRIMARY KEY, data JSON)")
dblite.insert("test", id=1, data={"some": {"nested": ["data", 1, 2]}})
dblite.fetchone("test") # `data` is auto-converted to Python dictionary
Row factories
A custom row factory can be specified, to return results as desired type instead of dictionaries.
def kvfactory(cursor, row): # Returns row as [(colname, value), ].
return list(zip([c[0] for c in cursor.description], row))
dblite.init(":memory:")
dblite.register_row_factory(kvfactory)
dblite.executescript("CREATE TABLE test (id INTEGER PRIMARY KEY, val TEXT)")
for row in dblite.select("sqlite_master"):
print(row) # Prints [("type", "table"), ("name", "test"), ..]
Row factory can also be specified per Database:
db = dblite.init(":memory:")
db.row_factory = lambda cursor, row: row
db.executescript("CREATE TABLE test (id INTEGER PRIMARY KEY, val TEXT)")
for row in db.select("sqlite_master"):
print(row) # Prints ("table", "test", ..)
Database row factory overrides the globally registered factory, if any.
Object-relational mapping
dblite uses dictionaries as rows by default, but can just as easily operate with various types of data classes and objects, using classes in place of table names and objects in place of data dictionaries.
And if data attributes have been declared as properties on the class, the class properties can be used directly in dblite in place of column names, e.g. for ORDER BY
clause.
(Such data descriptor properties are automatically available for property
attributes, classes with __slots__
, and namedtuples).
Data classes
schema = "CREATE TABLE devices (id INTEGER PRIMARY KEY, name TEXT)"
class Device(object):
def __init__(self, id=None, name=None):
self._id = id
self._name = name
def get_id(self): return self._id
def set_id(self, id): self._id = id
id = property(get_id, set_id)
def get_name(self): return self._name
def set_name(self, name): self._name = name
name = property(get_name, set_name)
Device.__name__ = "devices" # cls.__name__ will be used as table name
dblite.init(":memory:").executescript(schema)
device = Device(name="lidar")
device.id = dblite.insert(Device, device)
device.name = "solid-state lidar"
dblite.update(Device, device, {Device.id: device.id})
device = dblite.fetchone(Device, Device.id, where=device)
print(device.name) # Will be None as we only selected Device.id
for device in dblite.fetchall(Device, order=Device.name):
print(device.id, device.name)
dblite.delete(Device, device)
It is also possible to use very simple data classes with no declared properties.
schema = "CREATE TABLE devices (id INTEGER PRIMARY KEY, name TEXT)"
class Device(object):
def __init__(self, id=None, name=None):
self.id = id
self.name = name
Device.__name__ = "devices" # cls.__name__ will be used as table name
dblite.init(":memory:").executescript(schema)
device = Device(name="lidar")
device.id = dblite.insert(Device, device)
device.name = "solid-state lidar"
dblite.update(Device, device, id=device.id)
device = dblite.fetchone(Device, "id", where=device)
print(device.name) # Will be None as we only selected Device.id
for device in dblite.fetchall(Device, order="name"):
print(device.id, device.name)
dblite.delete(Device, device)
Classes with slots
schema = "CREATE TABLE devices (id INTEGER PRIMARY KEY, name TEXT)"
class Device(object):
__slots__ = ("id", "name")
def __init__(self, id=None, name=None):
self.id = id
self.name = name
Device.__name__ = "devices" # cls.__name__ will be used as table name
dblite.init(":memory:").executescript(schema)
device = Device(name="lidar")
device.id = dblite.insert(Device, device)
device.name = "solid-state lidar"
dblite.update(Device, device, id=device.id)
device = dblite.fetchone(Device, Device.id, where=device)
print(device.name) # Will be None as we only selected Device.id
for device in dblite.fetchall(Device, order=Device.name):
print(device.id, device.name)
dblite.delete(Device, device)
namedtuple
Works with both collections.namedtuple
and typing.NamedTuple
.
schema = "CREATE TABLE devices (id INTEGER PRIMARY KEY, name TEXT)"
Device = collections.namedtuple("devices", ("id", "name"))
dblite.init(":memory:").executescript(schema)
device = Device(id=None, name="lidar")
device_id = dblite.insert(Device, device)
device = Device(id=device_id, name="solid-state lidar")
dblite.update(Device, device, {Device.id: device_id})
device = dblite.fetchone(Device, Device.id, where=device)
print(device.name) # Will be None as we only selected Device.id
for device in dblite.fetchall(Device, order=Device.name):
print(device.id, device.name)
dblite.delete(Device, device)
Name quoting in objects
dblite automatically quotes table and column names in queries when using objects as arguments.
schema = 'CREATE TABLE "restaurant bookings" ("group" TEXT, "table" TEXT, "when" TIMESTAMP, "PATRON" BOOLEAN)'
Booking = collections.namedtuple("_", ("group", "table", "when", "patron"))
Booking.__name__ = "restaurant bookings"
dblite.init(":memory:").executescript(schema)
booking1 = Booking("Squirrel Charity", "Table 16", datetime.datetime(2022, 12, 30, 20, 30), False)
booking2 = Booking("The Three Henrys", "Table 23", datetime.datetime(2022, 12, 30, 19, 00), True)
dblite.insert(Booking, booking1)
dblite.insert(Booking, booking2)
for booking in dblite.fetchall(Booking, order=Booking.date):
print(booking.when, booking.group, booking.table, booking.patron)
For more thorough examples on using objects, see test/test_orm.py
.
In Postgres, schema definition is looked up from the database to ensure properly cased names in queries, as cased names for Postgres tables and columns must use the declared form. If there is no exact match for the Python name in database, falls back to lower-case name, or if name is lower-case, falls back to cased name if database has a single matching cased name.
SQLite
SQLite connection parameter needs to be a valid path or a path-like object, or the special ":memory:"
for transient in-memory database.
Connection flags default to check_same_thread=False, detect_types=sqlite3.PARSE_DECLTYPES
, can be overridden on init:
dblite.init("/path/to/my.db", detect_types=False)
Note that SQLite connections do not support multiple concurrent isolated transactions, transaction state is shared per connection. To mitigate this, Transaction contexts in SQLite default to exclusive access:
dblite.init(":memory:")
with dblite.transaction() as tx:
print("Entering another Transaction with-block will block until this exits.")
This can be overridden for SELECT
-only transactions:
dblite.init(":memory:")
with dblite.transaction(exclusive=False) as tx:
print("Will only be doing SELECT queries, no need for exclusion.")
tx.fetchall("test")
Postgres
Postgres connection parameters can be:
- Postgres URI scheme
"postgresql://user:pass@hostname:port/dbname?parameter1=val1&.."
- Postgres keyword-value format
"user=myuser password=mypass host=myhost port=myport dbname=myname .."
- dictionary of connection options
{"user": "myuser", "host": "myhost", ..}
# These are all equivalent:
dblite.init("postgresql://myuser@myhost/mydb")
dblite.init("user=myuser host=myhost dbname=mydb")
dblite.init({"user": "myuser", "host": "myhost", "dbname": "mydb"})
Postgres connection parameters can also be specified in OS environment, via standard Postgres environment variables like PGUSER
and PGPASSWORD
.
By default uses a pool of 1..4 connections per Database.
with dblite.init("host=localhost user=postgres dbname=mydb", maxconn=1):
print("Use a pool of only 1 connection.")
with dblite.init("host=localhost user=postgres dbname=mydb", minconn=4, maxconn=8):
print("Use a pool of 4..8 connections.")
Postgres transactions can specify database table schema name up front:
dblite.init("host=localhost user=postgres dbname=mydb")
with dblite.transaction(schema="information_schema") as tx:
for row in tx.fetchall("columns", table_schema="public",
order="table_name, ordinal_position"):
print(row["table_name"], row["column_name"], row["data_type"])
Postgres transactions support server-side cursors for iterative data access, fetching and materializing rows in batches:
dblite.init("host=localhost user=postgres dbname=bigdata")
with Transaction(lazy=True) as tx: # Can only run a single query
for i, row in enumerate(tx.select("some really huge table")):
print("Processing row #%s" % i)
# Can also specify size of fetched batches (default is 2000 rows)
with Transaction(lazy=True, itersize=100) as tx:
for i, row in enumerate(tx.select("some really huge table")):
print("Processing row #%s" % i)
Note that executescript()
in Postgres forces an internal reload of schema metadata, allowing insert() to return inserted primary key value for newly created tables, and query parameters to be auto-cast to expected column types.